Extra – Steam Tables¶
Saturated Steam table¶
The table below is the saturated liquid and vapour water. The temperatures range from \(0.01 ^{\circ} C\) to \(370.00 ^{\circ} C\) at \(5 ^{\circ} C\) increments.
In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/SatTandPofSteam.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df.head(75)
Out[2]:
Temperature (C) | Pressure (MPa) | Volume (l, m3/kg) | Volume (v, m3/kg) | Internal Energy (l, kJ/kg) | Δ Internal Energy of Vapourization (kJ/kg) | Internal Energy (v, kJ/kg) | Enthalpy (l, kJ/kg) | Δ Enthalpy of Vapourization (kJ/kg) | Enthalpy (v, kJ/kg) | Entropy (l, J/g*K) | Δ Entropy of Vapourization (kJ/kg) | Entropy (v, J/g*K) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.01 | 0.000612 | 0.001000 | 205.990000 | 0.000 | 2374.900 | 2374.9 | 0.000 | 2500.900 | 2500.9 | 0.000000 | 9.155500 | 9.1555 |
1 | 5.00 | 0.000873 | 0.001000 | 147.010000 | 21.019 | 2360.781 | 2381.8 | 21.020 | 2489.080 | 2510.1 | 0.076254 | 8.948546 | 9.0248 |
2 | 10.00 | 0.001228 | 0.001000 | 106.300000 | 42.020 | 2346.580 | 2388.6 | 42.021 | 2477.179 | 2519.2 | 0.151090 | 8.748710 | 8.8998 |
3 | 15.00 | 0.001706 | 0.001001 | 77.875000 | 62.980 | 2332.520 | 2395.5 | 62.981 | 2465.319 | 2528.3 | 0.224460 | 8.555840 | 8.7803 |
4 | 20.00 | 0.002339 | 0.001002 | 57.757000 | 83.912 | 2318.388 | 2402.3 | 83.914 | 2453.486 | 2537.4 | 0.296480 | 8.369520 | 8.6660 |
5 | 25.00 | 0.003170 | 0.001003 | 43.337000 | 104.830 | 2304.270 | 2409.1 | 104.830 | 2441.670 | 2546.5 | 0.367220 | 8.189380 | 8.5566 |
6 | 30.00 | 0.004247 | 0.001004 | 32.878000 | 125.730 | 2290.170 | 2415.9 | 125.730 | 2429.770 | 2555.5 | 0.436750 | 8.015250 | 8.4520 |
7 | 35.00 | 0.005629 | 0.001006 | 25.205000 | 146.630 | 2276.070 | 2422.7 | 146.630 | 2417.870 | 2564.5 | 0.505130 | 7.846570 | 8.3517 |
8 | 40.00 | 0.007385 | 0.001008 | 19.515000 | 167.530 | 2261.870 | 2429.4 | 167.530 | 2405.970 | 2573.5 | 0.572400 | 7.683100 | 8.2555 |
9 | 45.00 | 0.009595 | 0.001010 | 15.252000 | 188.430 | 2247.670 | 2436.1 | 188.430 | 2393.970 | 2582.4 | 0.638610 | 7.524690 | 8.1633 |
10 | 50.00 | 0.012352 | 0.001012 | 12.027000 | 209.330 | 2233.370 | 2442.7 | 209.340 | 2381.960 | 2591.3 | 0.703810 | 7.370990 | 8.0748 |
11 | 55.00 | 0.015762 | 0.001015 | 9.564300 | 230.240 | 2219.060 | 2449.3 | 230.260 | 2369.840 | 2600.1 | 0.768020 | 7.221780 | 7.9898 |
12 | 60.00 | 0.019946 | 0.001017 | 7.667200 | 251.160 | 2204.740 | 2455.9 | 251.180 | 2357.620 | 2608.8 | 0.831290 | 7.076810 | 7.9081 |
13 | 65.00 | 0.025042 | 0.001020 | 6.193500 | 272.090 | 2190.310 | 2462.4 | 272.120 | 2345.380 | 2617.5 | 0.893650 | 6.935950 | 7.8296 |
14 | 70.00 | 0.031201 | 0.001023 | 5.039500 | 293.030 | 2175.870 | 2468.9 | 293.070 | 2333.030 | 2626.1 | 0.955130 | 6.798870 | 7.7540 |
15 | 75.00 | 0.038595 | 0.001026 | 4.128900 | 313.990 | 2161.210 | 2475.2 | 314.030 | 2320.570 | 2634.6 | 1.015800 | 6.665400 | 7.6812 |
16 | 80.00 | 0.047414 | 0.001029 | 3.405200 | 334.960 | 2146.640 | 2481.6 | 335.010 | 2307.990 | 2643.0 | 1.075600 | 6.535500 | 7.6111 |
17 | 85.00 | 0.057867 | 0.001032 | 2.825800 | 355.950 | 2131.850 | 2487.8 | 356.010 | 2295.290 | 2651.3 | 1.134600 | 6.408800 | 7.5434 |
18 | 90.00 | 0.070182 | 0.001036 | 2.359100 | 376.970 | 2117.030 | 2494.0 | 377.040 | 2282.460 | 2659.5 | 1.192900 | 6.285200 | 7.4781 |
19 | 95.00 | 0.084608 | 0.001040 | 1.980600 | 398.000 | 2102.000 | 2500.0 | 398.090 | 2269.510 | 2667.6 | 1.250400 | 6.164700 | 7.4151 |
20 | 100.00 | 0.101420 | 0.001043 | 1.671800 | 419.060 | 2086.940 | 2506.0 | 419.170 | 2256.430 | 2675.6 | 1.307200 | 6.046900 | 7.3541 |
21 | 105.00 | 0.120900 | 0.001047 | 1.418400 | 440.150 | 2071.750 | 2511.9 | 440.270 | 2243.130 | 2683.4 | 1.363300 | 5.931900 | 7.2952 |
22 | 110.00 | 0.143380 | 0.001052 | 1.209300 | 461.260 | 2056.440 | 2517.7 | 461.420 | 2229.680 | 2691.1 | 1.418800 | 5.819300 | 7.2381 |
23 | 115.00 | 0.169180 | 0.001056 | 1.035800 | 482.410 | 2040.890 | 2523.3 | 482.590 | 2216.010 | 2698.6 | 1.473700 | 5.709100 | 7.1828 |
24 | 120.00 | 0.198670 | 0.001060 | 0.891210 | 503.600 | 2025.300 | 2528.9 | 503.810 | 2202.090 | 2705.9 | 1.527900 | 5.601200 | 7.1291 |
25 | 125.00 | 0.232240 | 0.001065 | 0.770030 | 524.830 | 2009.470 | 2534.3 | 525.070 | 2188.030 | 2713.1 | 1.581600 | 5.495400 | 7.0770 |
26 | 130.00 | 0.270280 | 0.001070 | 0.668000 | 546.090 | 1993.410 | 2539.5 | 546.380 | 2173.720 | 2720.1 | 1.634600 | 5.391800 | 7.0264 |
27 | 135.00 | 0.313230 | 0.001075 | 0.581730 | 567.410 | 1977.290 | 2544.7 | 567.740 | 2159.160 | 2726.9 | 1.687200 | 5.290000 | 6.9772 |
28 | 140.00 | 0.361540 | 0.001080 | 0.508450 | 588.770 | 1960.830 | 2549.6 | 589.160 | 2144.240 | 2733.4 | 1.739200 | 5.190100 | 6.9293 |
29 | 145.00 | 0.415680 | 0.001085 | 0.445960 | 610.190 | 1944.210 | 2554.4 | 610.640 | 2129.160 | 2739.8 | 1.790700 | 5.091900 | 6.8826 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
45 | 225.00 | 2.549700 | 0.001199 | 0.078403 | 963.740 | 1638.460 | 2602.2 | 966.800 | 1835.300 | 2802.1 | 2.564000 | 3.684300 | 6.2483 |
46 | 230.00 | 2.797100 | 0.001209 | 0.071503 | 986.810 | 1616.090 | 2602.9 | 990.190 | 1812.710 | 2802.9 | 2.610100 | 3.602700 | 6.2128 |
47 | 235.00 | 3.062500 | 0.001219 | 0.065298 | 1010.000 | 1593.200 | 2603.2 | 1013.800 | 1789.400 | 2803.2 | 2.656100 | 3.521400 | 6.1775 |
48 | 240.00 | 3.346900 | 0.001229 | 0.059705 | 1033.400 | 1569.700 | 2603.1 | 1037.600 | 1765.400 | 2803.0 | 2.702000 | 3.440300 | 6.1423 |
49 | 245.00 | 3.651200 | 0.001240 | 0.054654 | 1057.000 | 1545.700 | 2602.7 | 1061.500 | 1740.700 | 2802.2 | 2.747800 | 3.359400 | 6.1072 |
50 | 250.00 | 3.976200 | 0.001252 | 0.050083 | 1080.800 | 1521.000 | 2601.8 | 1085.800 | 1715.100 | 2800.9 | 2.793500 | 3.278600 | 6.0721 |
51 | 255.00 | 4.322900 | 0.001264 | 0.045938 | 1104.800 | 1495.700 | 2600.5 | 1110.200 | 1688.900 | 2799.1 | 2.839200 | 3.197700 | 6.0369 |
52 | 260.00 | 4.692300 | 0.001276 | 0.042173 | 1129.000 | 1469.700 | 2598.7 | 1135.000 | 1661.600 | 2796.6 | 2.884900 | 3.116700 | 6.0016 |
53 | 265.00 | 5.085300 | 0.001289 | 0.038746 | 1153.400 | 1443.100 | 2596.5 | 1160.000 | 1633.500 | 2793.5 | 2.930700 | 3.035400 | 5.9661 |
54 | 270.00 | 5.503000 | 0.001303 | 0.035621 | 1178.100 | 1415.600 | 2593.7 | 1185.300 | 1604.400 | 2789.7 | 2.976500 | 2.953900 | 5.9304 |
55 | 275.00 | 5.946400 | 0.001318 | 0.032766 | 1203.100 | 1387.200 | 2590.3 | 1210.900 | 1574.300 | 2785.2 | 3.022400 | 2.872000 | 5.8944 |
56 | 280.00 | 6.416600 | 0.001333 | 0.030153 | 1228.300 | 1358.100 | 2586.4 | 1236.900 | 1543.000 | 2779.9 | 3.068500 | 2.789400 | 5.8579 |
57 | 285.00 | 6.914700 | 0.001349 | 0.027756 | 1253.900 | 1327.900 | 2581.8 | 1263.200 | 1510.500 | 2773.7 | 3.114700 | 2.706200 | 5.8209 |
58 | 290.00 | 7.441800 | 0.001366 | 0.025555 | 1279.900 | 1296.600 | 2576.5 | 1290.000 | 1476.700 | 2766.7 | 3.161200 | 2.622200 | 5.7834 |
59 | 295.00 | 7.999100 | 0.001385 | 0.023529 | 1306.200 | 1264.300 | 2570.5 | 1317.300 | 1441.400 | 2758.7 | 3.208000 | 2.537100 | 5.7451 |
60 | 300.00 | 8.587900 | 0.001404 | 0.021660 | 1332.900 | 1230.700 | 2563.6 | 1345.000 | 1404.600 | 2749.6 | 3.255200 | 2.450700 | 5.7059 |
61 | 305.00 | 9.209400 | 0.001425 | 0.019933 | 1360.200 | 1195.700 | 2555.9 | 1373.300 | 1366.100 | 2739.4 | 3.302800 | 2.362900 | 5.6657 |
62 | 310.00 | 9.865100 | 0.001448 | 0.018335 | 1387.900 | 1159.200 | 2547.1 | 1402.200 | 1325.700 | 2727.9 | 3.351000 | 2.273400 | 5.6244 |
63 | 315.00 | 10.556000 | 0.001472 | 0.016851 | 1416.300 | 1120.900 | 2537.2 | 1431.800 | 1283.300 | 2715.1 | 3.399800 | 2.181800 | 5.5816 |
64 | 320.00 | 11.284000 | 0.001499 | 0.015471 | 1445.300 | 1080.700 | 2526.0 | 1462.200 | 1238.400 | 2700.6 | 3.449400 | 2.087800 | 5.5372 |
65 | 325.00 | 12.051000 | 0.001528 | 0.014183 | 1475.100 | 1038.300 | 2513.4 | 1493.500 | 1190.800 | 2684.3 | 3.500000 | 1.990800 | 5.4908 |
66 | 330.00 | 12.858000 | 0.001561 | 0.012979 | 1505.800 | 993.400 | 2499.2 | 1525.900 | 1140.100 | 2666.0 | 3.551800 | 1.890400 | 5.4422 |
67 | 335.00 | 13.707000 | 0.001597 | 0.011847 | 1537.600 | 945.400 | 2483.0 | 1559.500 | 1085.900 | 2645.4 | 3.605000 | 1.785600 | 5.3906 |
68 | 340.00 | 14.601000 | 0.001638 | 0.010781 | 1570.600 | 893.800 | 2464.4 | 1594.500 | 1027.300 | 2621.8 | 3.660100 | 1.675500 | 5.3356 |
69 | 345.00 | 15.541000 | 0.001685 | 0.009769 | 1605.300 | 837.800 | 2443.1 | 1631.500 | 963.400 | 2594.9 | 3.717600 | 1.558600 | 5.2762 |
70 | 350.00 | 16.529000 | 0.001740 | 0.008802 | 1642.100 | 776.000 | 2418.1 | 1670.900 | 892.700 | 2563.6 | 3.778400 | 1.432600 | 5.2110 |
71 | 355.00 | 17.570000 | 0.001808 | 0.007868 | 1682.000 | 706.400 | 2388.4 | 1713.700 | 812.900 | 2526.6 | 3.843900 | 1.294100 | 5.1380 |
72 | 360.00 | 18.666000 | 0.001895 | 0.006949 | 1726.300 | 625.500 | 2351.8 | 1761.700 | 719.800 | 2481.5 | 3.916700 | 1.136900 | 5.0536 |
73 | 365.00 | 19.821000 | 0.002017 | 0.006012 | 1777.800 | 526.000 | 2303.8 | 1817.800 | 605.100 | 2422.9 | 4.001400 | 0.948300 | 4.9497 |
74 | 370.00 | 21.046000 | 0.002216 | 0.004952 | 1844.200 | 385.900 | 2230.1 | 1890.900 | 443.400 | 2334.3 | 4.111400 | 0.689400 | 4.8008 |
75 rows × 13 columns
Super Heated Steam Table¶
The following tables are Isobaric superheated steam tables ranging from 1 MPa to 10 Mpa with 1 Mpa increaments
1 MPa¶
In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_1MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[2]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 179.88 | 1 | 0.19436 | 2582.7 | 2777.1 | 6.5850 |
1 | 200.00 | 1 | 0.20602 | 2622.2 | 2828.3 | 6.6955 |
2 | 250.00 | 1 | 0.23275 | 2710.4 | 2943.1 | 6.9265 |
3 | 300.00 | 1 | 0.25799 | 2793.6 | 3051.6 | 7.1246 |
4 | 350.00 | 1 | 0.28250 | 2875.7 | 3158.2 | 7.3029 |
5 | 400.00 | 1 | 0.30661 | 2957.9 | 3264.5 | 7.4669 |
6 | 450.00 | 1 | 0.33045 | 3040.9 | 3371.3 | 7.6200 |
7 | 500.00 | 1 | 0.35411 | 3125.0 | 3479.1 | 7.7641 |
8 | 550.00 | 1 | 0.37766 | 3210.5 | 3588.1 | 7.9008 |
9 | 600.00 | 1 | 0.40111 | 3297.5 | 3698.6 | 8.0310 |
10 | 650.00 | 1 | 0.42449 | 3386.0 | 3810.5 | 8.1557 |
11 | 700.00 | 1 | 0.44783 | 3476.2 | 3924.1 | 8.2755 |
12 | 750.00 | 1 | 0.47112 | 3568.1 | 4039.3 | 8.3909 |
13 | 800.00 | 1 | 0.49438 | 3661.7 | 4156.1 | 8.5024 |
14 | 850.00 | 1 | 0.51762 | 3757.0 | 4274.6 | 8.6103 |
15 | 900.00 | 1 | 0.54083 | 3853.9 | 4394.8 | 8.7150 |
16 | 950.00 | 1 | 0.56403 | 3952.5 | 4516.5 | 8.8166 |
17 | 1000.00 | 1 | 0.58721 | 4052.7 | 4639.9 | 8.9155 |
2 MPa¶
In [3]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_2MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[3]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 212.38 | 2 | 0.099585 | 2599.1 | 2798.3 | 6.3390 |
1 | 250.00 | 2 | 0.111500 | 2680.2 | 2903.2 | 6.5475 |
2 | 300.00 | 2 | 0.125510 | 2773.2 | 3024.2 | 6.7684 |
3 | 350.00 | 2 | 0.138600 | 2860.5 | 3137.7 | 6.9583 |
4 | 400.00 | 2 | 0.151210 | 2945.9 | 3248.3 | 7.1292 |
5 | 450.00 | 2 | 0.163540 | 3031.1 | 3358.2 | 7.2866 |
6 | 500.00 | 2 | 0.175680 | 3116.9 | 3468.2 | 7.4337 |
7 | 550.00 | 2 | 0.187700 | 3203.6 | 3579.0 | 7.5725 |
8 | 600.00 | 2 | 0.199610 | 3291.5 | 3690.7 | 7.7043 |
9 | 650.00 | 2 | 0.211460 | 3380.8 | 3803.8 | 7.8302 |
10 | 700.00 | 2 | 0.223260 | 3471.6 | 3918.2 | 7.9509 |
11 | 750.00 | 2 | 0.235020 | 3564.0 | 4034.1 | 8.0670 |
12 | 800.00 | 2 | 0.246740 | 3658.0 | 4151.5 | 8.1790 |
13 | 850.00 | 2 | 0.258440 | 3753.6 | 4270.5 | 8.2874 |
14 | 900.00 | 2 | 0.270120 | 3850.9 | 4391.1 | 8.3925 |
15 | 950.00 | 2 | 0.281780 | 3949.8 | 4513.3 | 8.4945 |
16 | 1000.00 | 2 | 0.293420 | 4050.2 | 4637.0 | 8.5936 |
3 MPa¶
In [4]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_3MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[4]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 233.85 | 3 | 0.066664 | 2603.2 | 2803.2 | 6.1856 |
1 | 250.00 | 3 | 0.070627 | 2644.7 | 2856.5 | 6.2893 |
2 | 300.00 | 3 | 0.081179 | 2750.8 | 2994.3 | 6.5412 |
3 | 350.00 | 3 | 0.090556 | 2844.4 | 3116.1 | 6.7449 |
4 | 400.00 | 3 | 0.099379 | 2933.5 | 3231.7 | 6.9234 |
5 | 450.00 | 3 | 0.107890 | 3021.2 | 3344.8 | 7.0856 |
6 | 500.00 | 3 | 0.116200 | 3108.6 | 3457.2 | 7.2359 |
7 | 550.00 | 3 | 0.124370 | 3196.6 | 3569.7 | 7.3768 |
8 | 600.00 | 3 | 0.132450 | 3285.5 | 3682.8 | 7.5103 |
9 | 650.00 | 3 | 0.140450 | 3375.6 | 3796.9 | 7.6373 |
10 | 700.00 | 3 | 0.148410 | 3467.0 | 3912.2 | 7.7590 |
11 | 750.00 | 3 | 0.156320 | 3559.9 | 4028.9 | 7.8758 |
12 | 800.00 | 3 | 0.164200 | 3654.3 | 4146.9 | 7.9885 |
13 | 850.00 | 3 | 0.172050 | 3750.3 | 4266.5 | 8.0973 |
14 | 900.00 | 3 | 0.179880 | 3847.9 | 4387.5 | 8.2028 |
15 | 950.00 | 3 | 0.187690 | 3947.0 | 4510.1 | 8.3051 |
16 | 1000.00 | 3 | 0.195490 | 4047.7 | 4634.1 | 8.4045 |
4 MPa¶
In [5]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_4MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[5]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 250.35 | 4 | 0.049776 | 2601.7 | 2800.8 | 6.0696 |
1 | 300.00 | 4 | 0.058870 | 2726.2 | 2961.7 | 6.3639 |
2 | 350.00 | 4 | 0.066473 | 2827.4 | 3093.3 | 6.5843 |
3 | 400.00 | 4 | 0.073431 | 2920.7 | 3214.5 | 6.7714 |
4 | 450.00 | 4 | 0.080043 | 3011.0 | 3331.2 | 6.9386 |
5 | 500.00 | 4 | 0.086442 | 3100.3 | 3446.0 | 7.0922 |
6 | 550.00 | 4 | 0.092700 | 3189.5 | 3560.3 | 7.2355 |
7 | 600.00 | 4 | 0.098859 | 3279.4 | 3674.9 | 7.3705 |
8 | 650.00 | 4 | 0.104940 | 3370.3 | 3790.1 | 7.4988 |
9 | 700.00 | 4 | 0.110980 | 3462.4 | 3906.3 | 7.6214 |
10 | 750.00 | 4 | 0.116970 | 3555.8 | 4023.6 | 7.7390 |
11 | 800.00 | 4 | 0.122920 | 3650.6 | 4142.3 | 7.8523 |
12 | 850.00 | 4 | 0.128850 | 3747.0 | 4262.4 | 7.9616 |
13 | 900.00 | 4 | 0.134760 | 3844.8 | 4383.9 | 8.0674 |
14 | 950.00 | 4 | 0.140650 | 3944.2 | 4506.8 | 8.1701 |
15 | 1000.00 | 4 | 0.146520 | 4045.1 | 4631.2 | 8.2697 |
5 MPa¶
In [6]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_5MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[6]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 263.94 | 5 | 0.039446 | 2597.0 | 2794.2 | 5.9737 |
1 | 300.00 | 5 | 0.045346 | 2699.0 | 2925.7 | 6.2110 |
2 | 350.00 | 5 | 0.051969 | 2809.5 | 3069.3 | 6.4516 |
3 | 400.00 | 5 | 0.057837 | 2907.5 | 3196.7 | 6.6483 |
4 | 450.00 | 5 | 0.063323 | 3000.6 | 3317.2 | 6.8210 |
5 | 500.00 | 5 | 0.068583 | 3091.7 | 3434.7 | 6.9781 |
6 | 550.00 | 5 | 0.073694 | 3182.4 | 3550.9 | 7.1237 |
7 | 600.00 | 5 | 0.078704 | 3273.3 | 3666.8 | 7.2605 |
8 | 650.00 | 5 | 0.083639 | 3365.0 | 3783.2 | 7.3901 |
9 | 700.00 | 5 | 0.088518 | 3457.7 | 3900.3 | 7.5136 |
10 | 750.00 | 5 | 0.093355 | 3551.6 | 4018.4 | 7.6320 |
11 | 800.00 | 5 | 0.098158 | 3646.9 | 4137.7 | 7.7458 |
12 | 850.00 | 5 | 0.102930 | 3743.6 | 4258.3 | 7.8556 |
13 | 900.00 | 5 | 0.107690 | 3841.8 | 4380.2 | 7.9618 |
14 | 950.00 | 5 | 0.112420 | 3941.5 | 4503.6 | 8.0648 |
15 | 1000.00 | 5 | 0.117150 | 4042.6 | 4628.3 | 8.1648 |
6 MPa¶
In [7]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_6MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[7]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 275.58 | 6 | 0.032448 | 2589.9 | 2784.6 | 5.8901 |
1 | 300.00 | 6 | 0.036189 | 2668.4 | 2885.5 | 6.0703 |
2 | 350.00 | 6 | 0.042251 | 2790.4 | 3043.9 | 6.3357 |
3 | 400.00 | 6 | 0.047419 | 2893.7 | 3178.2 | 6.5432 |
4 | 450.00 | 6 | 0.052166 | 2989.9 | 3302.9 | 6.7219 |
5 | 500.00 | 6 | 0.056671 | 3083.1 | 3423.1 | 6.8826 |
6 | 550.00 | 6 | 0.061021 | 3175.2 | 3541.3 | 7.0307 |
7 | 600.00 | 6 | 0.065265 | 3267.2 | 3658.7 | 7.1693 |
8 | 650.00 | 6 | 0.069434 | 3359.6 | 3776.2 | 7.3001 |
9 | 700.00 | 6 | 0.073545 | 3453.0 | 3894.3 | 7.4246 |
10 | 750.00 | 6 | 0.077614 | 3547.5 | 4013.2 | 7.5438 |
11 | 800.00 | 6 | 0.081648 | 3643.2 | 4133.1 | 7.6582 |
12 | 850.00 | 6 | 0.085655 | 3740.3 | 4254.2 | 7.7685 |
13 | 900.00 | 6 | 0.089641 | 3838.8 | 4376.6 | 7.8751 |
14 | 950.00 | 6 | 0.093608 | 3938.7 | 4500.3 | 7.9784 |
15 | 1000.00 | 6 | 0.097560 | 4040.1 | 4625.4 | 8.0786 |
7 MPa¶
In [8]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_7MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[8]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 285.83 | 7 | 0.027378 | 2581.0 | 2772.6 | 5.8148 |
1 | 300.00 | 7 | 0.029492 | 2633.5 | 2839.9 | 5.9337 |
2 | 350.00 | 7 | 0.035262 | 2770.1 | 3016.9 | 6.2304 |
3 | 400.00 | 7 | 0.039958 | 2879.5 | 3159.2 | 6.4502 |
4 | 450.00 | 7 | 0.044187 | 2979.0 | 3288.3 | 6.6353 |
5 | 500.00 | 7 | 0.048157 | 3074.3 | 3411.4 | 6.8000 |
6 | 550.00 | 7 | 0.051966 | 3167.9 | 3531.6 | 6.9506 |
7 | 600.00 | 7 | 0.055665 | 3260.9 | 3650.6 | 7.0910 |
8 | 650.00 | 7 | 0.059286 | 3354.3 | 3769.3 | 7.2231 |
9 | 700.00 | 7 | 0.062850 | 3448.3 | 3888.2 | 7.3486 |
10 | 750.00 | 7 | 0.066370 | 3543.3 | 4007.9 | 7.4685 |
11 | 800.00 | 7 | 0.069855 | 3639.5 | 4128.4 | 7.5836 |
12 | 850.00 | 7 | 0.073314 | 3736.9 | 4250.1 | 7.6944 |
13 | 900.00 | 7 | 0.076750 | 3835.7 | 4373.0 | 7.8014 |
14 | 950.00 | 7 | 0.080168 | 3935.9 | 4497.1 | 7.9050 |
15 | 1000.00 | 7 | 0.083571 | 4037.5 | 4622.5 | 8.0055 |
8 MPa¶
In [9]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_8MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[9]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 295.01 | 8 | 0.023526 | 2570.5 | 2758.7 | 5.7450 |
1 | 300.00 | 8 | 0.024279 | 2592.3 | 2786.5 | 5.7937 |
2 | 350.00 | 8 | 0.029975 | 2748.3 | 2988.1 | 6.1321 |
3 | 400.00 | 8 | 0.034344 | 2864.6 | 3139.4 | 6.3658 |
4 | 450.00 | 8 | 0.038194 | 2967.8 | 3273.3 | 6.5579 |
5 | 500.00 | 8 | 0.041767 | 3065.4 | 3399.5 | 6.7266 |
6 | 550.00 | 8 | 0.045172 | 3160.5 | 3521.8 | 6.8799 |
7 | 600.00 | 8 | 0.048463 | 3254.7 | 3642.4 | 7.0221 |
8 | 650.00 | 8 | 0.051675 | 3348.9 | 3762.3 | 7.1556 |
9 | 700.00 | 8 | 0.054828 | 3443.6 | 3882.2 | 7.2821 |
10 | 750.00 | 8 | 0.057937 | 3539.1 | 4002.6 | 7.4028 |
11 | 800.00 | 8 | 0.061011 | 3635.7 | 4123.8 | 7.5184 |
12 | 850.00 | 8 | 0.064057 | 3733.5 | 4246.0 | 7.6297 |
13 | 900.00 | 8 | 0.067082 | 3832.6 | 4369.3 | 7.7371 |
14 | 950.00 | 8 | 0.070088 | 3933.1 | 4493.8 | 7.8411 |
15 | 1000.00 | 8 | 0.073079 | 4035.0 | 4619.6 | 7.9419 |
9 MPa¶
In [10]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_9MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[10]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 303.34 | 9 | 0.020490 | 2558.5 | 2742.9 | 5.6791 |
1 | 350.00 | 9 | 0.025816 | 2724.9 | 2957.3 | 6.0380 |
2 | 400.00 | 9 | 0.029960 | 2849.2 | 3118.8 | 6.2876 |
3 | 450.00 | 9 | 0.033524 | 2956.3 | 3258.0 | 6.4872 |
4 | 500.00 | 9 | 0.036793 | 3056.3 | 3387.4 | 6.6603 |
5 | 550.00 | 9 | 0.039885 | 3153.0 | 3512.0 | 6.8164 |
6 | 600.00 | 9 | 0.042861 | 3248.4 | 3634.1 | 6.9605 |
7 | 650.00 | 9 | 0.045755 | 3343.4 | 3755.2 | 7.0953 |
8 | 700.00 | 9 | 0.048589 | 3438.8 | 3876.1 | 7.2229 |
9 | 750.00 | 9 | 0.051378 | 3534.9 | 3997.3 | 7.3443 |
10 | 800.00 | 9 | 0.054132 | 3632.0 | 4119.1 | 7.4606 |
11 | 850.00 | 9 | 0.056858 | 3730.2 | 4241.9 | 7.5724 |
12 | 900.00 | 9 | 0.059562 | 3829.6 | 4365.7 | 7.6802 |
13 | 950.00 | 9 | 0.062248 | 3930.3 | 4490.6 | 7.7844 |
14 | 1000.00 | 9 | 0.064918 | 4032.4 | 4616.7 | 7.8855 |
10 MPa¶
In [11]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_excel('../figures/Module-4/Steam_10MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[11]:
Temperature (C) | Pressure (MPa) | Volume (m3/kg) | Internal Energy (kJ/kg) | Enthalpy (kJ/kg) | Entropy (J/g*K) | |
---|---|---|---|---|---|---|
0 | 311 | 10 | 0.018030 | 2545.2 | 2725.5 | 5.6160 |
1 | 350 | 10 | 0.022440 | 2699.6 | 2924.0 | 5.9459 |
2 | 400 | 10 | 0.026436 | 2833.1 | 3097.4 | 6.2141 |
3 | 450 | 10 | 0.029782 | 2944.5 | 3242.3 | 6.4219 |
4 | 500 | 10 | 0.032811 | 3047.0 | 3375.1 | 6.5995 |
5 | 550 | 10 | 0.035654 | 3145.4 | 3502.0 | 6.7585 |
6 | 600 | 10 | 0.038378 | 3242.0 | 3625.8 | 6.9045 |
7 | 650 | 10 | 0.041018 | 3337.9 | 3748.1 | 7.0408 |
8 | 700 | 10 | 0.043597 | 3434.0 | 3870.0 | 7.1693 |
9 | 750 | 10 | 0.046131 | 3530.7 | 3992.0 | 7.2916 |
10 | 800 | 10 | 0.048629 | 3628.2 | 4114.5 | 7.4085 |
11 | 850 | 10 | 0.051099 | 3726.8 | 4237.8 | 7.5207 |
12 | 900 | 10 | 0.053547 | 3826.5 | 4362.0 | 7.6290 |
13 | 950 | 10 | 0.055976 | 3927.5 | 4487.3 | 7.7335 |
14 | 1000 | 10 | 0.058390 | 4029.9 | 4613.8 | 7.8349 |
In [ ]: