Extra – Steam Tables

Saturated Steam table

The table below is the saturated liquid and vapour water. The temperatures range from \(0.01 ^{\circ} C\) to \(370.00 ^{\circ} C\) at \(5 ^{\circ} C\) increments.

In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/SatTandPofSteam.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df.head(75)
Out[2]:
Temperature (C) Pressure (MPa) Volume (l, m3/kg) Volume (v, m3/kg) Internal Energy (l, kJ/kg) Δ Internal Energy of Vapourization (kJ/kg) Internal Energy (v, kJ/kg) Enthalpy (l, kJ/kg) Δ Enthalpy of Vapourization (kJ/kg) Enthalpy (v, kJ/kg) Entropy (l, J/g*K) Δ Entropy of Vapourization (kJ/kg) Entropy (v, J/g*K)
0 0.01 0.000612 0.001000 205.990000 0.000 2374.900 2374.9 0.000 2500.900 2500.9 0.000000 9.155500 9.1555
1 5.00 0.000873 0.001000 147.010000 21.019 2360.781 2381.8 21.020 2489.080 2510.1 0.076254 8.948546 9.0248
2 10.00 0.001228 0.001000 106.300000 42.020 2346.580 2388.6 42.021 2477.179 2519.2 0.151090 8.748710 8.8998
3 15.00 0.001706 0.001001 77.875000 62.980 2332.520 2395.5 62.981 2465.319 2528.3 0.224460 8.555840 8.7803
4 20.00 0.002339 0.001002 57.757000 83.912 2318.388 2402.3 83.914 2453.486 2537.4 0.296480 8.369520 8.6660
5 25.00 0.003170 0.001003 43.337000 104.830 2304.270 2409.1 104.830 2441.670 2546.5 0.367220 8.189380 8.5566
6 30.00 0.004247 0.001004 32.878000 125.730 2290.170 2415.9 125.730 2429.770 2555.5 0.436750 8.015250 8.4520
7 35.00 0.005629 0.001006 25.205000 146.630 2276.070 2422.7 146.630 2417.870 2564.5 0.505130 7.846570 8.3517
8 40.00 0.007385 0.001008 19.515000 167.530 2261.870 2429.4 167.530 2405.970 2573.5 0.572400 7.683100 8.2555
9 45.00 0.009595 0.001010 15.252000 188.430 2247.670 2436.1 188.430 2393.970 2582.4 0.638610 7.524690 8.1633
10 50.00 0.012352 0.001012 12.027000 209.330 2233.370 2442.7 209.340 2381.960 2591.3 0.703810 7.370990 8.0748
11 55.00 0.015762 0.001015 9.564300 230.240 2219.060 2449.3 230.260 2369.840 2600.1 0.768020 7.221780 7.9898
12 60.00 0.019946 0.001017 7.667200 251.160 2204.740 2455.9 251.180 2357.620 2608.8 0.831290 7.076810 7.9081
13 65.00 0.025042 0.001020 6.193500 272.090 2190.310 2462.4 272.120 2345.380 2617.5 0.893650 6.935950 7.8296
14 70.00 0.031201 0.001023 5.039500 293.030 2175.870 2468.9 293.070 2333.030 2626.1 0.955130 6.798870 7.7540
15 75.00 0.038595 0.001026 4.128900 313.990 2161.210 2475.2 314.030 2320.570 2634.6 1.015800 6.665400 7.6812
16 80.00 0.047414 0.001029 3.405200 334.960 2146.640 2481.6 335.010 2307.990 2643.0 1.075600 6.535500 7.6111
17 85.00 0.057867 0.001032 2.825800 355.950 2131.850 2487.8 356.010 2295.290 2651.3 1.134600 6.408800 7.5434
18 90.00 0.070182 0.001036 2.359100 376.970 2117.030 2494.0 377.040 2282.460 2659.5 1.192900 6.285200 7.4781
19 95.00 0.084608 0.001040 1.980600 398.000 2102.000 2500.0 398.090 2269.510 2667.6 1.250400 6.164700 7.4151
20 100.00 0.101420 0.001043 1.671800 419.060 2086.940 2506.0 419.170 2256.430 2675.6 1.307200 6.046900 7.3541
21 105.00 0.120900 0.001047 1.418400 440.150 2071.750 2511.9 440.270 2243.130 2683.4 1.363300 5.931900 7.2952
22 110.00 0.143380 0.001052 1.209300 461.260 2056.440 2517.7 461.420 2229.680 2691.1 1.418800 5.819300 7.2381
23 115.00 0.169180 0.001056 1.035800 482.410 2040.890 2523.3 482.590 2216.010 2698.6 1.473700 5.709100 7.1828
24 120.00 0.198670 0.001060 0.891210 503.600 2025.300 2528.9 503.810 2202.090 2705.9 1.527900 5.601200 7.1291
25 125.00 0.232240 0.001065 0.770030 524.830 2009.470 2534.3 525.070 2188.030 2713.1 1.581600 5.495400 7.0770
26 130.00 0.270280 0.001070 0.668000 546.090 1993.410 2539.5 546.380 2173.720 2720.1 1.634600 5.391800 7.0264
27 135.00 0.313230 0.001075 0.581730 567.410 1977.290 2544.7 567.740 2159.160 2726.9 1.687200 5.290000 6.9772
28 140.00 0.361540 0.001080 0.508450 588.770 1960.830 2549.6 589.160 2144.240 2733.4 1.739200 5.190100 6.9293
29 145.00 0.415680 0.001085 0.445960 610.190 1944.210 2554.4 610.640 2129.160 2739.8 1.790700 5.091900 6.8826
... ... ... ... ... ... ... ... ... ... ... ... ... ...
45 225.00 2.549700 0.001199 0.078403 963.740 1638.460 2602.2 966.800 1835.300 2802.1 2.564000 3.684300 6.2483
46 230.00 2.797100 0.001209 0.071503 986.810 1616.090 2602.9 990.190 1812.710 2802.9 2.610100 3.602700 6.2128
47 235.00 3.062500 0.001219 0.065298 1010.000 1593.200 2603.2 1013.800 1789.400 2803.2 2.656100 3.521400 6.1775
48 240.00 3.346900 0.001229 0.059705 1033.400 1569.700 2603.1 1037.600 1765.400 2803.0 2.702000 3.440300 6.1423
49 245.00 3.651200 0.001240 0.054654 1057.000 1545.700 2602.7 1061.500 1740.700 2802.2 2.747800 3.359400 6.1072
50 250.00 3.976200 0.001252 0.050083 1080.800 1521.000 2601.8 1085.800 1715.100 2800.9 2.793500 3.278600 6.0721
51 255.00 4.322900 0.001264 0.045938 1104.800 1495.700 2600.5 1110.200 1688.900 2799.1 2.839200 3.197700 6.0369
52 260.00 4.692300 0.001276 0.042173 1129.000 1469.700 2598.7 1135.000 1661.600 2796.6 2.884900 3.116700 6.0016
53 265.00 5.085300 0.001289 0.038746 1153.400 1443.100 2596.5 1160.000 1633.500 2793.5 2.930700 3.035400 5.9661
54 270.00 5.503000 0.001303 0.035621 1178.100 1415.600 2593.7 1185.300 1604.400 2789.7 2.976500 2.953900 5.9304
55 275.00 5.946400 0.001318 0.032766 1203.100 1387.200 2590.3 1210.900 1574.300 2785.2 3.022400 2.872000 5.8944
56 280.00 6.416600 0.001333 0.030153 1228.300 1358.100 2586.4 1236.900 1543.000 2779.9 3.068500 2.789400 5.8579
57 285.00 6.914700 0.001349 0.027756 1253.900 1327.900 2581.8 1263.200 1510.500 2773.7 3.114700 2.706200 5.8209
58 290.00 7.441800 0.001366 0.025555 1279.900 1296.600 2576.5 1290.000 1476.700 2766.7 3.161200 2.622200 5.7834
59 295.00 7.999100 0.001385 0.023529 1306.200 1264.300 2570.5 1317.300 1441.400 2758.7 3.208000 2.537100 5.7451
60 300.00 8.587900 0.001404 0.021660 1332.900 1230.700 2563.6 1345.000 1404.600 2749.6 3.255200 2.450700 5.7059
61 305.00 9.209400 0.001425 0.019933 1360.200 1195.700 2555.9 1373.300 1366.100 2739.4 3.302800 2.362900 5.6657
62 310.00 9.865100 0.001448 0.018335 1387.900 1159.200 2547.1 1402.200 1325.700 2727.9 3.351000 2.273400 5.6244
63 315.00 10.556000 0.001472 0.016851 1416.300 1120.900 2537.2 1431.800 1283.300 2715.1 3.399800 2.181800 5.5816
64 320.00 11.284000 0.001499 0.015471 1445.300 1080.700 2526.0 1462.200 1238.400 2700.6 3.449400 2.087800 5.5372
65 325.00 12.051000 0.001528 0.014183 1475.100 1038.300 2513.4 1493.500 1190.800 2684.3 3.500000 1.990800 5.4908
66 330.00 12.858000 0.001561 0.012979 1505.800 993.400 2499.2 1525.900 1140.100 2666.0 3.551800 1.890400 5.4422
67 335.00 13.707000 0.001597 0.011847 1537.600 945.400 2483.0 1559.500 1085.900 2645.4 3.605000 1.785600 5.3906
68 340.00 14.601000 0.001638 0.010781 1570.600 893.800 2464.4 1594.500 1027.300 2621.8 3.660100 1.675500 5.3356
69 345.00 15.541000 0.001685 0.009769 1605.300 837.800 2443.1 1631.500 963.400 2594.9 3.717600 1.558600 5.2762
70 350.00 16.529000 0.001740 0.008802 1642.100 776.000 2418.1 1670.900 892.700 2563.6 3.778400 1.432600 5.2110
71 355.00 17.570000 0.001808 0.007868 1682.000 706.400 2388.4 1713.700 812.900 2526.6 3.843900 1.294100 5.1380
72 360.00 18.666000 0.001895 0.006949 1726.300 625.500 2351.8 1761.700 719.800 2481.5 3.916700 1.136900 5.0536
73 365.00 19.821000 0.002017 0.006012 1777.800 526.000 2303.8 1817.800 605.100 2422.9 4.001400 0.948300 4.9497
74 370.00 21.046000 0.002216 0.004952 1844.200 385.900 2230.1 1890.900 443.400 2334.3 4.111400 0.689400 4.8008

75 rows × 13 columns

Super Heated Steam Table

The following tables are Isobaric superheated steam tables ranging from 1 MPa to 10 Mpa with 1 Mpa increaments

1 MPa

In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_1MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[2]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 179.88 1 0.19436 2582.7 2777.1 6.5850
1 200.00 1 0.20602 2622.2 2828.3 6.6955
2 250.00 1 0.23275 2710.4 2943.1 6.9265
3 300.00 1 0.25799 2793.6 3051.6 7.1246
4 350.00 1 0.28250 2875.7 3158.2 7.3029
5 400.00 1 0.30661 2957.9 3264.5 7.4669
6 450.00 1 0.33045 3040.9 3371.3 7.6200
7 500.00 1 0.35411 3125.0 3479.1 7.7641
8 550.00 1 0.37766 3210.5 3588.1 7.9008
9 600.00 1 0.40111 3297.5 3698.6 8.0310
10 650.00 1 0.42449 3386.0 3810.5 8.1557
11 700.00 1 0.44783 3476.2 3924.1 8.2755
12 750.00 1 0.47112 3568.1 4039.3 8.3909
13 800.00 1 0.49438 3661.7 4156.1 8.5024
14 850.00 1 0.51762 3757.0 4274.6 8.6103
15 900.00 1 0.54083 3853.9 4394.8 8.7150
16 950.00 1 0.56403 3952.5 4516.5 8.8166
17 1000.00 1 0.58721 4052.7 4639.9 8.9155

2 MPa

In [3]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_2MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[3]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 212.38 2 0.099585 2599.1 2798.3 6.3390
1 250.00 2 0.111500 2680.2 2903.2 6.5475
2 300.00 2 0.125510 2773.2 3024.2 6.7684
3 350.00 2 0.138600 2860.5 3137.7 6.9583
4 400.00 2 0.151210 2945.9 3248.3 7.1292
5 450.00 2 0.163540 3031.1 3358.2 7.2866
6 500.00 2 0.175680 3116.9 3468.2 7.4337
7 550.00 2 0.187700 3203.6 3579.0 7.5725
8 600.00 2 0.199610 3291.5 3690.7 7.7043
9 650.00 2 0.211460 3380.8 3803.8 7.8302
10 700.00 2 0.223260 3471.6 3918.2 7.9509
11 750.00 2 0.235020 3564.0 4034.1 8.0670
12 800.00 2 0.246740 3658.0 4151.5 8.1790
13 850.00 2 0.258440 3753.6 4270.5 8.2874
14 900.00 2 0.270120 3850.9 4391.1 8.3925
15 950.00 2 0.281780 3949.8 4513.3 8.4945
16 1000.00 2 0.293420 4050.2 4637.0 8.5936

3 MPa

In [4]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_3MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[4]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 233.85 3 0.066664 2603.2 2803.2 6.1856
1 250.00 3 0.070627 2644.7 2856.5 6.2893
2 300.00 3 0.081179 2750.8 2994.3 6.5412
3 350.00 3 0.090556 2844.4 3116.1 6.7449
4 400.00 3 0.099379 2933.5 3231.7 6.9234
5 450.00 3 0.107890 3021.2 3344.8 7.0856
6 500.00 3 0.116200 3108.6 3457.2 7.2359
7 550.00 3 0.124370 3196.6 3569.7 7.3768
8 600.00 3 0.132450 3285.5 3682.8 7.5103
9 650.00 3 0.140450 3375.6 3796.9 7.6373
10 700.00 3 0.148410 3467.0 3912.2 7.7590
11 750.00 3 0.156320 3559.9 4028.9 7.8758
12 800.00 3 0.164200 3654.3 4146.9 7.9885
13 850.00 3 0.172050 3750.3 4266.5 8.0973
14 900.00 3 0.179880 3847.9 4387.5 8.2028
15 950.00 3 0.187690 3947.0 4510.1 8.3051
16 1000.00 3 0.195490 4047.7 4634.1 8.4045

4 MPa

In [5]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_4MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[5]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 250.35 4 0.049776 2601.7 2800.8 6.0696
1 300.00 4 0.058870 2726.2 2961.7 6.3639
2 350.00 4 0.066473 2827.4 3093.3 6.5843
3 400.00 4 0.073431 2920.7 3214.5 6.7714
4 450.00 4 0.080043 3011.0 3331.2 6.9386
5 500.00 4 0.086442 3100.3 3446.0 7.0922
6 550.00 4 0.092700 3189.5 3560.3 7.2355
7 600.00 4 0.098859 3279.4 3674.9 7.3705
8 650.00 4 0.104940 3370.3 3790.1 7.4988
9 700.00 4 0.110980 3462.4 3906.3 7.6214
10 750.00 4 0.116970 3555.8 4023.6 7.7390
11 800.00 4 0.122920 3650.6 4142.3 7.8523
12 850.00 4 0.128850 3747.0 4262.4 7.9616
13 900.00 4 0.134760 3844.8 4383.9 8.0674
14 950.00 4 0.140650 3944.2 4506.8 8.1701
15 1000.00 4 0.146520 4045.1 4631.2 8.2697

5 MPa

In [6]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_5MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[6]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 263.94 5 0.039446 2597.0 2794.2 5.9737
1 300.00 5 0.045346 2699.0 2925.7 6.2110
2 350.00 5 0.051969 2809.5 3069.3 6.4516
3 400.00 5 0.057837 2907.5 3196.7 6.6483
4 450.00 5 0.063323 3000.6 3317.2 6.8210
5 500.00 5 0.068583 3091.7 3434.7 6.9781
6 550.00 5 0.073694 3182.4 3550.9 7.1237
7 600.00 5 0.078704 3273.3 3666.8 7.2605
8 650.00 5 0.083639 3365.0 3783.2 7.3901
9 700.00 5 0.088518 3457.7 3900.3 7.5136
10 750.00 5 0.093355 3551.6 4018.4 7.6320
11 800.00 5 0.098158 3646.9 4137.7 7.7458
12 850.00 5 0.102930 3743.6 4258.3 7.8556
13 900.00 5 0.107690 3841.8 4380.2 7.9618
14 950.00 5 0.112420 3941.5 4503.6 8.0648
15 1000.00 5 0.117150 4042.6 4628.3 8.1648

6 MPa

In [7]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_6MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[7]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 275.58 6 0.032448 2589.9 2784.6 5.8901
1 300.00 6 0.036189 2668.4 2885.5 6.0703
2 350.00 6 0.042251 2790.4 3043.9 6.3357
3 400.00 6 0.047419 2893.7 3178.2 6.5432
4 450.00 6 0.052166 2989.9 3302.9 6.7219
5 500.00 6 0.056671 3083.1 3423.1 6.8826
6 550.00 6 0.061021 3175.2 3541.3 7.0307
7 600.00 6 0.065265 3267.2 3658.7 7.1693
8 650.00 6 0.069434 3359.6 3776.2 7.3001
9 700.00 6 0.073545 3453.0 3894.3 7.4246
10 750.00 6 0.077614 3547.5 4013.2 7.5438
11 800.00 6 0.081648 3643.2 4133.1 7.6582
12 850.00 6 0.085655 3740.3 4254.2 7.7685
13 900.00 6 0.089641 3838.8 4376.6 7.8751
14 950.00 6 0.093608 3938.7 4500.3 7.9784
15 1000.00 6 0.097560 4040.1 4625.4 8.0786

7 MPa

In [8]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_7MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[8]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 285.83 7 0.027378 2581.0 2772.6 5.8148
1 300.00 7 0.029492 2633.5 2839.9 5.9337
2 350.00 7 0.035262 2770.1 3016.9 6.2304
3 400.00 7 0.039958 2879.5 3159.2 6.4502
4 450.00 7 0.044187 2979.0 3288.3 6.6353
5 500.00 7 0.048157 3074.3 3411.4 6.8000
6 550.00 7 0.051966 3167.9 3531.6 6.9506
7 600.00 7 0.055665 3260.9 3650.6 7.0910
8 650.00 7 0.059286 3354.3 3769.3 7.2231
9 700.00 7 0.062850 3448.3 3888.2 7.3486
10 750.00 7 0.066370 3543.3 4007.9 7.4685
11 800.00 7 0.069855 3639.5 4128.4 7.5836
12 850.00 7 0.073314 3736.9 4250.1 7.6944
13 900.00 7 0.076750 3835.7 4373.0 7.8014
14 950.00 7 0.080168 3935.9 4497.1 7.9050
15 1000.00 7 0.083571 4037.5 4622.5 8.0055

8 MPa

In [9]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_8MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[9]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 295.01 8 0.023526 2570.5 2758.7 5.7450
1 300.00 8 0.024279 2592.3 2786.5 5.7937
2 350.00 8 0.029975 2748.3 2988.1 6.1321
3 400.00 8 0.034344 2864.6 3139.4 6.3658
4 450.00 8 0.038194 2967.8 3273.3 6.5579
5 500.00 8 0.041767 3065.4 3399.5 6.7266
6 550.00 8 0.045172 3160.5 3521.8 6.8799
7 600.00 8 0.048463 3254.7 3642.4 7.0221
8 650.00 8 0.051675 3348.9 3762.3 7.1556
9 700.00 8 0.054828 3443.6 3882.2 7.2821
10 750.00 8 0.057937 3539.1 4002.6 7.4028
11 800.00 8 0.061011 3635.7 4123.8 7.5184
12 850.00 8 0.064057 3733.5 4246.0 7.6297
13 900.00 8 0.067082 3832.6 4369.3 7.7371
14 950.00 8 0.070088 3933.1 4493.8 7.8411
15 1000.00 8 0.073079 4035.0 4619.6 7.9419

9 MPa

In [10]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_9MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[10]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 303.34 9 0.020490 2558.5 2742.9 5.6791
1 350.00 9 0.025816 2724.9 2957.3 6.0380
2 400.00 9 0.029960 2849.2 3118.8 6.2876
3 450.00 9 0.033524 2956.3 3258.0 6.4872
4 500.00 9 0.036793 3056.3 3387.4 6.6603
5 550.00 9 0.039885 3153.0 3512.0 6.8164
6 600.00 9 0.042861 3248.4 3634.1 6.9605
7 650.00 9 0.045755 3343.4 3755.2 7.0953
8 700.00 9 0.048589 3438.8 3876.1 7.2229
9 750.00 9 0.051378 3534.9 3997.3 7.3443
10 800.00 9 0.054132 3632.0 4119.1 7.4606
11 850.00 9 0.056858 3730.2 4241.9 7.5724
12 900.00 9 0.059562 3829.6 4365.7 7.6802
13 950.00 9 0.062248 3930.3 4490.6 7.7844
14 1000.00 9 0.064918 4032.4 4616.7 7.8855

10 MPa

In [11]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_excel('../figures/Module-4/Steam_10MPa.xlsx', sheet_name='Sheet2', index_col=None, na_values=['NA'])
df
Out[11]:
Temperature (C) Pressure (MPa) Volume (m3/kg) Internal Energy (kJ/kg) Enthalpy (kJ/kg) Entropy (J/g*K)
0 311 10 0.018030 2545.2 2725.5 5.6160
1 350 10 0.022440 2699.6 2924.0 5.9459
2 400 10 0.026436 2833.1 3097.4 6.2141
3 450 10 0.029782 2944.5 3242.3 6.4219
4 500 10 0.032811 3047.0 3375.1 6.5995
5 550 10 0.035654 3145.4 3502.0 6.7585
6 600 10 0.038378 3242.0 3625.8 6.9045
7 650 10 0.041018 3337.9 3748.1 7.0408
8 700 10 0.043597 3434.0 3870.0 7.1693
9 750 10 0.046131 3530.7 3992.0 7.2916
10 800 10 0.048629 3628.2 4114.5 7.4085
11 850 10 0.051099 3726.8 4237.8 7.5207
12 900 10 0.053547 3826.5 4362.0 7.6290
13 950 10 0.055976 3927.5 4487.3 7.7335
14 1000 10 0.058390 4029.9 4613.8 7.8349
In [ ]: